Analysis of Dark Current in BRITE Nanostellite CCD Sensors †

نویسنده

  • Adam Popowicz
چکیده

The BRightest Target Explorer (BRITE) is the pioneering nanosatellite mission dedicated for photometric observations of the brightest stars in the sky. The BRITE charge coupled device (CCD) sensors are poorly shielded against extensive flux of energetic particles which constantly induce defects in the silicon lattice. In this paper we investigate the temporal evolution of the generation of the dark current in the BRITE CCDs over almost four years after launch. Utilizing several steps of image processing and employing normalization of the results, it was possible to obtain useful information about the progress of thermal activity in the sensors. The outcomes show a clear and consistent linear increase of induced damage despite the fact that only about 0.14% of CCD pixels were probed. By performing the analysis of temperature dependencies of the dark current, we identified the observed defects as phosphorus-vacancy (PV) pairs, which are common in proton irradiated CCD matrices. Moreover, the Meyer-Neldel empirical rule was confirmed in our dark current data, yielding E M N = 24.8 meV for proton-induced PV defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The perceptibility curve test applied to CCD and two methods of digitization of dental film-based radiographs

Objectives: Several methods of image acquisition are accessible in dentistry. There is no overall acceptable method for image digitization so all different types of images can be comparable. The objective of this study was to compare the diagnostic accuracy of different methods of image digitization. Methods: This accuracy diagnostic test study used perceptibility curve test which first intr...

متن کامل

Beam tests of a CCD tracker for vertex detector application

We have studied the performance of a CCD tracker using minimum ionizing particles (MIP’s) from KEK PS beam line. The detector consists of three layers of CCD sensors manufactured by Hamamatsu Photonics, which suppress the dark current at surface by one order of magnitude compared with that of the conventional ones. We have observed MIP’s can be detected with sufficient signal to noise ratio eve...

متن کامل

Low Voltage Electron Multiplying CCD in a CMOS Process

Low light level and high-speed image sensors as required for space applications can suffer from a decrease in the signal to noise ratio (SNR) due to the photon-starved environment and limitations of the sensor’s readout noise. The SNR can be increased by the implementation of Time Delay Integration (TDI) as it allows photoelectrons from multiple exposures to be summed in the charge domain with ...

متن کامل

Radiation Damage E ects in CCD Sensors for Tracking Applications in High Energy Physics Ph.D. Thesis

This thesis presents systematic studies on the radiation damage e ects in 2and 3-phase Charge Coupled Devices (CCD). CCDs are one of the primary options for tracking devices at the vertex detector of a future Linear Collider due to their high precision and twodimensional resolution. The radiation backgrounds near the interaction point impose considerable challenge to the tolerance of the CCD se...

متن کامل

Temperature dependence of dark current in a CCD

We present data for dark current of a back-illuminated CCD over the temperature range of 222 to 291 K. Using an Arrhenius law, we found that the analysis of the data leads to the relation between the prefactor and the apparent activation energy as described by the Meyer-Neldel rule. However, a more detailed analysis shows that the activation energy for the dark current changes in the temperatur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018